Construction Techniques for Cubical Complexes, Odd Cubical 4-Polytopes, and Prescribed Dual Manifolds
نویسندگان
چکیده
منابع مشابه
Construction Techniques for Cubical Complexes, Odd Cubical 4-Polytopes, and Prescribed Dual Manifolds
We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). As an application we obtain an instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms an existence conjecture of Hetyei (1995). More systematically, we prove that every normal crossing codimensi...
متن کاملJ an 2 00 4 Construction techniques for cubical complexes , odd cubical 4 - polytopes , and prescribed dual manifolds
We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). As an application we obtain an instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms an existence conjecture of Hetyei (1995). More systematically, we prove that every normal crossing codimensi...
متن کاملO ct 2 00 3 Construction techniques for cubical complexes , odd cubical 4 - polytopes , and prescribed dual manifolds
We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). Thus we obtain the first instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms the existence conjecture of Hetyei [17, Conj. 2, p. 325]. More systematically, we prove that every normal crossing...
متن کاملNeighborly Cubical Polytopes
Neighborly cubical polytopes exist: for any n ≥ d ≥ 2r + 2, there is a cubical convex d-polytope C d whose r-skeleton is combinatorially equivalent to that of the n-dimensional cube. This solves a problem of Babson, Billera & Chan. Kalai conjectured that the boundary ∂C d of a neighborly cubical polytope C n d maximizes the f -vector among all cubical (d− 1)-spheres with 2 vertices. While we sh...
متن کاملNeighborly Cubical Polytopes and Spheres
We prove that the neighborly cubical polytopes studied by Günter M. Ziegler and the first author [14] arise as a special case of the neighborly cubical spheres constructed by Babson, Billera, and Chan [4]. By relating the two constructions we obtain an explicit description of a non-polytopal neighborly cubical sphere and, further, a new proof of the fact that the cubical equivelar surfaces of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Experimental Mathematics
سال: 2004
ISSN: 1058-6458,1944-950X
DOI: 10.1080/10586458.2004.10504548